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This Presentation

• A new way to attend and analyze conferences
• A great way to gain background in a specific field
• Security: S&P, USENIX Security
• Systems: ASPLOS
• Computer Architecture: ISCA
• Programming Languages and Compilers: PLDI
• Operating Systems: OSDI
• Machine learning: ICML, NeurIPS

• What I call this process: Personalized Best Paper Award Selection
• Who is in the committee: Just YOU!
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How the Process Works (cont.)

• Before the conference:
• Looking at the sessions and the program schedule
• Choose the sessions that seem more interesting to you
• Read the abstracts (and maybe the introduction)
• Prepare some questions for the most interesting papers

• During the conference:
• Prepare snacks, tea, coffee, etc. J
• Attending the sessions based on your planned schedule
• Dive deeper in the most exciting papers and follow up with the authors after 

their presentation
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How the Process Works

• After the conference:
• Build a list of papers you liked the most (~20 papers)
• Write a brief review for these papers (first revision)
• Filter these papers and pick top ~5 papers
• Read the entire paper and write a detailed review for these papers (second 

revision)
• Pick the best paper!

• Remark: The selection is not only based on the technical aspects of 
the paper. Your interests also play a significant role.
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Structure for the First Revision1

• Write a brief summary (~200 words) answering these questions:
• What is the problem this paper is trying to solve?
• What are the key ideas of the paper? What are the key insights?
• What is the key contribution of the paper?
• What are your key takeouts?

• First read the abstract and the introduction
• Go through the graphs and their captions
• Read some sections for more details and more clarification if needed

51. How to review papers by Onur Mutlu (https://www.youtube.com/watch?v=tOL6FANAJ8c)



Structure for the Second Revision

• Summary (first revision)
• Strengths (most important ones in order)
• Weaknesses (most important ones in order)
• Potential improvements
• Final remark that why you liked/disliked the paper

• It’s important to think critically!
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More Hints to Think Critically2

• Some questions to ask to evaluate a paper:
• Does the paper solve the problem in a novel way?
• What kind of contribution is the paper offering?

• Is it a technical contribution (focused on problem solving)?
• Is it a conceptual contribution (focused on problem formulation)?
• Is it a utilitarian contribution (translation and deployment of the idea)?

• Does the solution fit the problem well?
• Are the contributions presented well by the authors?
• How fresh is the idea? Could the key insights be easily generated?
• How practical is the solution?

72. Levin and Redell, “How (and how not) to write a good systems paper,” OSR 1983..



My Selection for the First Round3
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Session #papers
Operating Systems Security 1

Hardware Side Channel Attacks 2
Hardware Side Channel Defenses 3

Hardware Security 1
Machine Learning: Backdoor and Poisoning 3

Adversarial Machine Learning: Defenses 1
Machine Learning: Privacy Issues 3

Cryptography: Attacks 1
Malware and Program Analysis 1

Attacks 1
Research on Surveillance and Censorship 1

Forensics and Diagnostics for Security and Voting 1
Usable Security and Privacy: User Perspectives 1

3. Refer to the appendix for the full list of papers



Best Paper Candidates
• Hiding the Access Pattern is Not Enough: Exploiting Search Pattern Leakage in 

Searchable Encryption
• You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion 

• USENIX Sec’21 Distinguished Paper
• Double-Cross Attacks: Subverting Active Learning Systems
• Rage Against the Machine Clear: A Systematic Analysis of Machine Clears and 

Their Implications for Transient Execution Attacks 
• USENIX Sec’21 Distinguished Paper

• An Analysis of Speculative Type Confusion Vulnerabilities in the Wild 
• USENIX Sec’21 Distinguished Paper

• Poisoning the Unlabeled Dataset of Semi-Supervised Learning 
• USENIX Sec’21 Distinguished Paper

• Extracting Training Data from Large Language Models
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning4
• Semi-supervised learning: ML models learning from a (small) set of 

labeled examples and a (large) set of unlabeled examples
• Maine advantage: 100X less labeled data required
• This paper: Attacking semi-supervised learning techniques by 

poisoning only 0.1% of unlabeled data
• Main contributions:
• The first poisoning attack on semi-supervised learning
• Showing a direct relation between the model’s accuracy and the attack’s 

success
• Developing a defense against their attack that perfectly separates clean 

examples from poisoned examples

104. Carlini, Nicholas. "Poisoning the Unlabeled Dataset of Semi-Supervised Learning." USENIX Security '21 (2021).



Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• Background:
• Fully-supervised learning:

• Semi-supervised learning: the model teaches itself the labels of the 
unlabeled data.
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• Background:
• Poisoning attack: The attacker manipulates (poisons) some of the train data 

for two possible purposes:
• Indiscriminate poisoning: Reducing the model’s accuracy
• Targeted poisoning: mis-classifying targeted examples as a desired label

• Threat model of this paper:  

12

𝑈! ← 𝒜(𝑥∗, 𝑦∗, 𝑁, 𝑓, 𝑇#, 𝑋$)Unlabeled poisoned examples

Adversary The input to be poisoned

Incorrect label
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Type of NN Training algorithm
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𝒇𝜽 ← 𝑻(𝒇, 𝑿, 𝑼 ∪ 𝑼𝒑)



Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• The attack: Interpolation Consistency Poisoning
• 𝑥∗: target image
• 𝑦∗: desired and incorrect label
• 𝑥/: a correctly classified image in the labeled examples which its label is 𝑦∗
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Normal Training Failed attack Successful attack

• The attack inserts N 
points between 𝑥∗
and 𝑥/ to fool the 
training to mis-label 
the target point



Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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A correct training with clean examples

The target example 
to attack



Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• How the attack works
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Poisoning the Unlabeled Dataset of  Semi-
Supervised Learning
• Evaluation
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Poisoning attack success rate

Poisoning attack success rate out 8 trials



An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild5

• Tow forms of Sepctre V1 attack:

• If both branches in (2) mispredict: attacker-controlled location is leaked
• Challenge: No data dependency between the attacker-controlled variable and the branches

• Current SW solutions unable to detect and mitigate speculative type confusion
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(1) Bounds check bypass (2) Type confusion

5. Kirzner, Ofek, and Adam Morrison. "An analysis of speculative type confusion vulnerabilities in 
the wild." USENIX Security '21 (2021)

Attacker-controlled variable



An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• Question of this paper: Are OS kernels vulnerable to speculative type 

confusion?
• Different sources of type confusion:
• Attacker-introduced: adding code through eBPF
• Compiler-introduced: C compilers emit type confusion gadgets
• Polymorphism-related: object-oriented programming of Linux code

• Contributions:
• Examining all different sources of type confusion in Linux
• Design of attacks to exploit type confusion gadgets in Linux
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An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• In this presentation: How to exploit speculative type confusion in eBPF
• eBPF: a Linux subsystem that lets Linux kernel safely execute 

untrusted, user-supplied kernel extensions in privileged mode
• eBPF code requires to go through static safety verification and 

compilation before execution
• The verification step ensures that the program does not access 

unintended memory location (e.g., only reading stack slots that the 
program has written something into them)
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An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• eBPF Verification has vulnerabilities
• Verifier only considers possible 

execution flows; i.e., unable to catch 
type confusion
• Code rejection in (b) fails 

accidentally. It would fail if we have a 
perfect verifier!
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An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Challenges of the attack:

• Predicting two branches as Not-Taken, which their conditions are mutually exclusive
• How to evict the values checked by these branches to have enough time to leak data
• How to observe the leaked data

• NOTE: eBPF runs in the kernel address space and the attacker runs in the user 
space ==> Cannot share memory

• Solution for branch mis-training: cross address-space out-of-place mis-training
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An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Cross address-space out-of-place branch mis-training

• Setting up a “shadow” of natively-compiled eBPF in the attacker’s process: Shadow 
program is going to train PHT entries to mispredict victim’s (eBPF program) branches

• However, Not-Taken conditions are not mutually exclusive in the shadow program
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Shadow program eBPF program

Shadow program needs to set 
up the A’ and B’ addresses in a 
way to have PHT collision with 
A and B addresses



An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Cross address-space out-of-place branch mis-training

• Two factors to ensure collision:
• (1) the state of the Global History Register (GHR)
• (2) BPU-indexing in the branches’ virtual address

• Solution for (1): Executing a branch slide for both shadow and eBPF
• Solution for (2): “brute-force” search to find collisions
• Search algorithm in next slides
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Branch Slide



An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Cache flushing in eBPF program:

• Two reason that we need cache flush:
• (1) Causing a miss for values checked by the branches to have enough time for leakage
• (2) Observing the leaked data via Flush+Reload

• Solution: HORN technique
• Another eBPF program running on another core to access the cache lines that are required to 

be flushed in the victim è cache miss for the victim
• A third eBPF program is needed to observe the leaked data
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An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Search algorithm to find address-based PHT collisions

• Allocating a 2MB buffer and for each byte in the buffer we put the shadow in that location 
and try the attack

• (1) Repeating the shadow to mis-train the branches and hope they collide with the victim’s 
branches

• (2) Invoking the in-kernel victim
• (3) if no leaks occurs: No collision, move the shadow and go to (1)
• (4) if leak occurs: No collision if the victim is leaking its own stack data
• (5) trying the attack again and flip the relevant bit in that stack variable
• (6) if the leaked bit flips too: No collision, move the shadow and go to (1)
• (7) if the leaked bit does not flip: Collision found
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An Analysis of  Speculative Type Confusion 
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Evaluation

• Goal: leaking an arbitrary page (4096 bytes) of kernel memory
• Retrying the attack for k times
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Best Papers Final Ranking

1. Poisoning the Unlabeled Dataset of Semi-Supervised Learning
2. An Analysis of Speculative Type Confusion Vulnerabilities in the Wild
3. Extracting Training Data from Large Language Models
4. You Autocomplete Me: Poisoning Vulnerabilities in Neural Code 

Completion
5. Rage Against the Machine Clear: A Systematic Analysis of Machine Clears 

and Their Implications for Transient Execution Attacks
6. Hiding the Access Pattern is Not Enough: Exploiting Search Pattern 

Leakage in Searchable Encryption
7. Double-Cross Attacks: Subverting Active Learning Systems
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Best Paper Award Goes to …
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• Remarks:
• First attack on semi-supervised learning (which was considered as the savior!)
• Proposing a good mitigation to address their attack (still there is hope!)
• Great articulation of the idea! All the sections walks the reader through the 

fundamentals of ML and why the author is making all the decisions to launch 
his attack



Appendix: List of  all papers in the first round
1. Hiding the Access Pattern is Not Enough: Exploiting Search Pattern Leakage in Searchable Encryption

• Session: Cryptography: Attacks

2. "It's stressful having all these phones": Investigating Sex Workers' Safety Goals, Risks, and Practices Online
• Session: Usable Security and Privacy: User Perspectives

3. Lord of the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical
• Session: Hardware Side Channel Attacks

4. Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend
• Session: Hardware Side Channel Attacks

5. SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript
• Session: Hardware Security

6. Osiris: Automated Discovery of Microarchitectural Side Channels
• Session: Hardware Side Channel Defenses

7. Swivel: Hardening WebAssembly against Spectre
• Session: Hardware Side Channel Defenses
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Appendix: List of  all papers in the first round
8. You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion

• Session: Machine Learning: Backdoor and Poisoning

9. Double-Cross Attacks: Subverting Active Learning Systems
• Session: Machine Learning: Backdoor and Poisoning

10. CADE: Detecting and Explaining Concept Drift Samples for Security Applications
• Session: Adversarial Machine Learning: Defenses

11. An Analysis of Speculative Type Confusion Vulnerabilities in the Wild
• Session: Operating Systems Security

12. Weaponizing Middleboxes for TCP Reflected Amplification
• Session: Research on Surveillance and Censorship

13. Poisoning the Unlabeled Dataset of Semi-Supervised Learning
• Session: Machine Learning: Backdoor and Poisoning

14. When Malware Changed Its Mind: An Empirical Study of Variable Program Behaviors in the Real World
• Session: Malware and Program Analysis 1

15. ATLAS: A Sequence-based Learning Approach for Attack Investigation
• Session: Forensics and Diagnostics for Security and Voting
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Appendix: List of  all papers in the first round
16. Rage Against the Machine Clear: A Systematic Analysis of Machine Clears and Their Implications for 

Transient Execution Attacks
• Session: Hardware Side Channel Defenses

17. Too Good to Be Safe: Tricking Lane Detection in Autonomous Driving with Crafted Perturbations
• Session: Attacks

18. Systematic Evaluation of Privacy Risks of Machine Learning Models
• Session: Machine Learning: Privacy Issues

19. Extracting Training Data from Large Language Models
• Session: Machine Learning: Privacy Issues

20. Stealing Links from Graph Neural Networks
• Session: Machine Learning: Privacy Issues
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Thanks for your attention!


