
USENIX Security 2021 Ali Hajiabadi
National University of Singapore

CompArch
Group Meeting

This Presentation

• A new way to attend and analyze conferences
• A great way to gain background in a specific field
• Security: S&P, USENIX Security
• Systems: ASPLOS
• Computer Architecture: ISCA
• Programming Languages and Compilers: PLDI
• Operating Systems: OSDI
• Machine learning: ICML, NeurIPS

• What I call this process: Personalized Best Paper Award Selection
• Who is in the committee: Just YOU!

2

How the Process Works (cont.)

• Before the conference:
• Looking at the sessions and the program schedule
• Choose the sessions that seem more interesting to you
• Read the abstracts (and maybe the introduction)
• Prepare some questions for the most interesting papers

• During the conference:
• Prepare snacks, tea, coffee, etc. J
• Attending the sessions based on your planned schedule
• Dive deeper in the most exciting papers and follow up with the authors after

their presentation

3

How the Process Works

• After the conference:
• Build a list of papers you liked the most (~20 papers)
• Write a brief review for these papers (first revision)
• Filter these papers and pick top ~5 papers
• Read the entire paper and write a detailed review for these papers (second

revision)
• Pick the best paper!

• Remark: The selection is not only based on the technical aspects of
the paper. Your interests also play a significant role.

4

Structure for the First Revision1

• Write a brief summary (~200 words) answering these questions:
• What is the problem this paper is trying to solve?
• What are the key ideas of the paper? What are the key insights?
• What is the key contribution of the paper?
• What are your key takeouts?

• First read the abstract and the introduction
• Go through the graphs and their captions
• Read some sections for more details and more clarification if needed

51. How to review papers by Onur Mutlu (https://www.youtube.com/watch?v=tOL6FANAJ8c)

Structure for the Second Revision

• Summary (first revision)
• Strengths (most important ones in order)
• Weaknesses (most important ones in order)
• Potential improvements
• Final remark that why you liked/disliked the paper

• It’s important to think critically!

6

More Hints to Think Critically2

• Some questions to ask to evaluate a paper:
• Does the paper solve the problem in a novel way?
• What kind of contribution is the paper offering?

• Is it a technical contribution (focused on problem solving)?
• Is it a conceptual contribution (focused on problem formulation)?
• Is it a utilitarian contribution (translation and deployment of the idea)?

• Does the solution fit the problem well?
• Are the contributions presented well by the authors?
• How fresh is the idea? Could the key insights be easily generated?
• How practical is the solution?

72. Levin and Redell, “How (and how not) to write a good systems paper,” OSR 1983..

My Selection for the First Round3

8

Session #papers
Operating Systems Security 1

Hardware Side Channel Attacks 2
Hardware Side Channel Defenses 3

Hardware Security 1
Machine Learning: Backdoor and Poisoning 3

Adversarial Machine Learning: Defenses 1
Machine Learning: Privacy Issues 3

Cryptography: Attacks 1
Malware and Program Analysis 1

Attacks 1
Research on Surveillance and Censorship 1

Forensics and Diagnostics for Security and Voting 1
Usable Security and Privacy: User Perspectives 1

3. Refer to the appendix for the full list of papers

Best Paper Candidates
• Hiding the Access Pattern is Not Enough: Exploiting Search Pattern Leakage in

Searchable Encryption
• You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion

• USENIX Sec’21 Distinguished Paper
• Double-Cross Attacks: Subverting Active Learning Systems
• Rage Against the Machine Clear: A Systematic Analysis of Machine Clears and

Their Implications for Transient Execution Attacks
• USENIX Sec’21 Distinguished Paper

• An Analysis of Speculative Type Confusion Vulnerabilities in the Wild
• USENIX Sec’21 Distinguished Paper

• Poisoning the Unlabeled Dataset of Semi-Supervised Learning
• USENIX Sec’21 Distinguished Paper

• Extracting Training Data from Large Language Models

9

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning4
• Semi-supervised learning: ML models learning from a (small) set of

labeled examples and a (large) set of unlabeled examples
• Maine advantage: 100X less labeled data required
• This paper: Attacking semi-supervised learning techniques by

poisoning only 0.1% of unlabeled data
• Main contributions:
• The first poisoning attack on semi-supervised learning
• Showing a direct relation between the model’s accuracy and the attack’s

success
• Developing a defense against their attack that perfectly separates clean

examples from poisoned examples

104. Carlini, Nicholas. "Poisoning the Unlabeled Dataset of Semi-Supervised Learning." USENIX Security '21 (2021).

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• Background:
• Fully-supervised learning:

• Semi-supervised learning: the model teaches itself the labels of the
unlabeled data.

11

𝑓! ← 𝑇(𝑓, 𝑋)

Labeled data

Model

Training algorithm

Trained model

Parameters

𝑓! ← 𝑇(𝑓, 𝑋, 𝑈)

Labeled data

Model

Training algorithm

Trained model

Parameters Unlabeled data

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• Background:
• Poisoning attack: The attacker manipulates (poisons) some of the train data

for two possible purposes:
• Indiscriminate poisoning: Reducing the model’s accuracy
• Targeted poisoning: mis-classifying targeted examples as a desired label

• Threat model of this paper:

12

𝑈! ← 𝒜(𝑥∗, 𝑦∗, 𝑁, 𝑓, 𝑇#, 𝑋$)Unlabeled poisoned examples

Adversary The input to be poisoned

Incorrect label
(desired label)

#examples to inject

Type of NN Training algorithm
A subset of labeled data

𝒇𝜽 ← 𝑻(𝒇, 𝑿, 𝑼 ∪ 𝑼𝒑)

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• The attack: Interpolation Consistency Poisoning
• 𝑥∗: target image
• 𝑦∗: desired and incorrect label
• 𝑥/: a correctly classified image in the labeled examples which its label is 𝑦∗

13

Normal Training Failed attack Successful attack

• The attack inserts N
points between 𝑥∗
and 𝑥/ to fool the
training to mis-label
the target point

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

14

A correct training with clean examples

The target example
to attack

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

15

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

16

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

17

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

18

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

19

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

20

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• How the attack works

21

Poisoning the Unlabeled Dataset of Semi-
Supervised Learning
• Evaluation

22

Poisoning attack success rate

Poisoning attack success rate out 8 trials

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild5

• Tow forms of Sepctre V1 attack:

• If both branches in (2) mispredict: attacker-controlled location is leaked
• Challenge: No data dependency between the attacker-controlled variable and the branches

• Current SW solutions unable to detect and mitigate speculative type confusion

23

(1) Bounds check bypass (2) Type confusion

5. Kirzner, Ofek, and Adam Morrison. "An analysis of speculative type confusion vulnerabilities in
the wild." USENIX Security '21 (2021)

Attacker-controlled variable

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• Question of this paper: Are OS kernels vulnerable to speculative type

confusion?
• Different sources of type confusion:
• Attacker-introduced: adding code through eBPF
• Compiler-introduced: C compilers emit type confusion gadgets
• Polymorphism-related: object-oriented programming of Linux code

• Contributions:
• Examining all different sources of type confusion in Linux
• Design of attacks to exploit type confusion gadgets in Linux

24

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• In this presentation: How to exploit speculative type confusion in eBPF
• eBPF: a Linux subsystem that lets Linux kernel safely execute

untrusted, user-supplied kernel extensions in privileged mode
• eBPF code requires to go through static safety verification and

compilation before execution
• The verification step ensures that the program does not access

unintended memory location (e.g., only reading stack slots that the
program has written something into them)

25

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• eBPF Verification has vulnerabilities
• Verifier only considers possible

execution flows; i.e., unable to catch
type confusion
• Code rejection in (b) fails

accidentally. It would fail if we have a
perfect verifier!

26

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Challenges of the attack:

• Predicting two branches as Not-Taken, which their conditions are mutually exclusive
• How to evict the values checked by these branches to have enough time to leak data
• How to observe the leaked data

• NOTE: eBPF runs in the kernel address space and the attacker runs in the user
space ==> Cannot share memory

• Solution for branch mis-training: cross address-space out-of-place mis-training

27

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Cross address-space out-of-place branch mis-training

• Setting up a “shadow” of natively-compiled eBPF in the attacker’s process: Shadow
program is going to train PHT entries to mispredict victim’s (eBPF program) branches

• However, Not-Taken conditions are not mutually exclusive in the shadow program

28

Shadow program eBPF program

Shadow program needs to set
up the A’ and B’ addresses in a
way to have PHT collision with
A and B addresses

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Cross address-space out-of-place branch mis-training

• Two factors to ensure collision:
• (1) the state of the Global History Register (GHR)
• (2) BPU-indexing in the branches’ virtual address

• Solution for (1): Executing a branch slide for both shadow and eBPF
• Solution for (2): “brute-force” search to find collisions
• Search algorithm in next slides

29

Branch Slide

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Cache flushing in eBPF program:

• Two reason that we need cache flush:
• (1) Causing a miss for values checked by the branches to have enough time for leakage
• (2) Observing the leaked data via Flush+Reload

• Solution: HORN technique
• Another eBPF program running on another core to access the cache lines that are required to

be flushed in the victim è cache miss for the victim
• A third eBPF program is needed to observe the leaked data

30

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Search algorithm to find address-based PHT collisions

• Allocating a 2MB buffer and for each byte in the buffer we put the shadow in that location
and try the attack

• (1) Repeating the shadow to mis-train the branches and hope they collide with the victim’s
branches

• (2) Invoking the in-kernel victim
• (3) if no leaks occurs: No collision, move the shadow and go to (1)
• (4) if leak occurs: No collision if the victim is leaking its own stack data
• (5) trying the attack again and flip the relevant bit in that stack variable
• (6) if the leaked bit flips too: No collision, move the shadow and go to (1)
• (7) if the leaked bit does not flip: Collision found

31

An Analysis of Speculative Type Confusion
Vulnerabilities in the Wild
• A proof-of-concept-attack via eBPF
• Evaluation

• Goal: leaking an arbitrary page (4096 bytes) of kernel memory
• Retrying the attack for k times

32

Best Papers Final Ranking

1. Poisoning the Unlabeled Dataset of Semi-Supervised Learning
2. An Analysis of Speculative Type Confusion Vulnerabilities in the Wild
3. Extracting Training Data from Large Language Models
4. You Autocomplete Me: Poisoning Vulnerabilities in Neural Code

Completion
5. Rage Against the Machine Clear: A Systematic Analysis of Machine Clears

and Their Implications for Transient Execution Attacks
6. Hiding the Access Pattern is Not Enough: Exploiting Search Pattern

Leakage in Searchable Encryption
7. Double-Cross Attacks: Subverting Active Learning Systems

33

Best Paper Award Goes to …

34

• Remarks:
• First attack on semi-supervised learning (which was considered as the savior!)
• Proposing a good mitigation to address their attack (still there is hope!)
• Great articulation of the idea! All the sections walks the reader through the

fundamentals of ML and why the author is making all the decisions to launch
his attack

Appendix: List of all papers in the first round
1. Hiding the Access Pattern is Not Enough: Exploiting Search Pattern Leakage in Searchable Encryption

• Session: Cryptography: Attacks

2. "It's stressful having all these phones": Investigating Sex Workers' Safety Goals, Risks, and Practices Online
• Session: Usable Security and Privacy: User Perspectives

3. Lord of the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are Practical
• Session: Hardware Side Channel Attacks

4. Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend
• Session: Hardware Side Channel Attacks

5. SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript
• Session: Hardware Security

6. Osiris: Automated Discovery of Microarchitectural Side Channels
• Session: Hardware Side Channel Defenses

7. Swivel: Hardening WebAssembly against Spectre
• Session: Hardware Side Channel Defenses

35

Appendix: List of all papers in the first round
8. You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion

• Session: Machine Learning: Backdoor and Poisoning

9. Double-Cross Attacks: Subverting Active Learning Systems
• Session: Machine Learning: Backdoor and Poisoning

10. CADE: Detecting and Explaining Concept Drift Samples for Security Applications
• Session: Adversarial Machine Learning: Defenses

11. An Analysis of Speculative Type Confusion Vulnerabilities in the Wild
• Session: Operating Systems Security

12. Weaponizing Middleboxes for TCP Reflected Amplification
• Session: Research on Surveillance and Censorship

13. Poisoning the Unlabeled Dataset of Semi-Supervised Learning
• Session: Machine Learning: Backdoor and Poisoning

14. When Malware Changed Its Mind: An Empirical Study of Variable Program Behaviors in the Real World
• Session: Malware and Program Analysis 1

15. ATLAS: A Sequence-based Learning Approach for Attack Investigation
• Session: Forensics and Diagnostics for Security and Voting

36

Appendix: List of all papers in the first round
16. Rage Against the Machine Clear: A Systematic Analysis of Machine Clears and Their Implications for

Transient Execution Attacks
• Session: Hardware Side Channel Defenses

17. Too Good to Be Safe: Tricking Lane Detection in Autonomous Driving with Crafted Perturbations
• Session: Attacks

18. Systematic Evaluation of Privacy Risks of Machine Learning Models
• Session: Machine Learning: Privacy Issues

19. Extracting Training Data from Large Language Models
• Session: Machine Learning: Privacy Issues

20. Stealing Links from Graph Neural Networks
• Session: Machine Learning: Privacy Issues

37

USENIX Security 2021 Ali Hajiabadi
National University of Singapore

CompArch
Group Meeting

Thanks for your attention!

