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ABSTRACT

In this work, we propose a new attack called Conjuring that ex-
ploits one of the main features of CPUs’ frontend: speculative fetch
of instructions. We show that the Pattern History Table (PHT) in
modern CPUs are a great channel to learn and leak control flow of
victim applications. Unlike prior work, Conjuring does not require
that one primes the PHT or interferes with the victim execution
enabling a realistic and unprivileged attacker to leak control flow in-
formation. By improving the branch predictors, our attack becomes
even more serious and practical. We demonstrate the feasibility of
our attack on different existing Intel, AMD, and Apple CPUs.

1 INTRODUCTION

Modern CPUs deploy various optimizations to improve perfor-
mance. One of the main feature of these processors is speculative
fetch and execution upon branch instructions. Introduction of Spec-
tre [20] in 2018 demonstrated the vulnerabilities arising from spec-
ulation. However, almost all speculation-based attacks focus on
speculative execution of instructions and its side effects on the
CPU’s backend. As a consequence, all proposed defenses mitigate
the misspeculated leaks in the backend and let the frontend to oper-
ate normally. In this work, we demonstrate that even speculatively
fetching instructions without executing them can lead to data leaks
that were not intended by the normal and correct execution of the
programs. We refer to such attacks as speculative fetch attacks.

BranchScope [11] is one of the few speculative fetch attacks
that uses the Pattern History Table (PHT) as a channel to learn
the secret bits of a victim. To achieve this, (1) the attacker primes
one of the PHT entries into a known state (e.g., strongly taken),
(2) the victim executes a secret dependent branch (colliding with
the primed PHT entry), and (3) the attacker extracts the secret bit
by probing the same PHT entry to investigate changes to its state.
In addition, BranchScope requires OS control (i.e., a privileged
attacker) to interrupt the victim exactly at each iteration of the
secret dependent branch to extract each bit of the secret.

In this work, we propose the Conjuring attack that leaks the
victim control flow without needing to prime the PHT and interfere
with the victim execution which enables an unprivileged attacker
to accurately leak secret information. Figure 1 shows an overview
of our attack. We evaluate different branch predictors and show
that existing branch predictors are capable of remembering a sig-
nificant portion of the victim’s control flow decisions. Hence, we
exploit the fact that the victim itself can train the branch predictor
to remember the secret control flow pattern and later the attacker
creates PHT collisions to infer the victim’s decisions on a specific
secret dependent branch. As a case study, we review RSA imple-
mentations found in various existing crypto libraries [24, 30] and
show that TAGE-SC-L-64KB and Tournament branch predictors
can remember more than 60% of the private exponent of realistic
RSA keys which is sufficient for full key recovery by exploiting the
redundancies in RSA public keys storage [15]. By improving branch
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Figure 1: Conjuring attack overview.

predictors, they can lead to even more serious attacks without any
cryptanalysis efforts.

Moreover, we present our Proof-of-Concept (PoC) attack to fur-
ther demonstrate the feasibility of Conjuring on existing Intel,
AMD, and Apple CPUs. Our results confirm that modern proces-
sors can show meaningful (i.e., secret dependent) differences upon
fetching branches, leading to victim’s control flow extraction.

The main contributions of this work are as follows:
• Proposing a practical variant of speculative fetch attacks, called
Conjuring, demonstrating vulnerabilities for unprivileged at-
tackers without requiring an additional PHT priming step;

• Analysis of different branch predictors and their vulnerabilities
against speculative fetch attacks;

• Demonstrating the feasibility of Conjuring with PoC attacks
targeting existing CPUs;

• Investigating different mitigation strategies to effectively block
speculative fetch leaks; we propose efficient and comprehensive
solutions for future CPUs.
The rest of the paper is organized as follows: In Section 2, we

provide the necessary background on speculative fetch attacks. In
Section 3, we introduce the Conjuring attack, and investigate the
leakage of existing branch predictors against Conjuring. We fur-
ther demonstrate the feasibility of Conjuring in Section 4 through
our PoC attacks on Intel, AMD, and Apple CPUs. In Section 5, we
discuss existing defenses against Conjuring and propose more
efficient and comprehensive solutions for future CPUs. Finally, we
discuss the Related Work in Section 6 and conclude in Section 7.

Responsible Disclosure. We have responsibly disclosed our
attacks to the affected CPU vendors and received the approval to
distribute our findings.

2 BACKGROUND

Speculative fetch attacks exploit the fact that the branch predictor
remembers the decisions originally made by the victim. Branch-
Scope [11] is one of the early versions of speculative fetch attacks.
While BranchScope does not acknowledge the main source of the
attack, it is able to extract victim’s control flow by leaking data from
the frontend. BranchScope exploits the victim gadgets containing
secret dependent branches, and follows three steps:
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1 void RSA_decode (int c, uint8 *d, int n){
2 int R0 = 1, R1 = c, i;
3 for (i = sizeof(d)-1; i >= 0; i++){
4 if (d[i] == 1){ R0 = R0 * R1 % n; R1 = R1 * R1 % n;}
5 else { R1 = R0 * R1 % n; R0 = R0 * R0 % n;}
6 }
7 }

Listing 1: RSA modular exponentiation using Montgomery

Ladder Powering [18]; d is secret and control flow decisions

on line 4 are secret dependent.

Step 1 Priming the PHT. The attacker initializes one of the Pattern
History Table (PHT) entries to a known state (e.g., strongly
taken).

Step 2 Running the victim. The attacker initiates the victim exe-
cution which its secret dependent branch collides with the
same primed PHT entry.

Step 3 Probing the PHT. In the last step, the attacker probes the
same PHT entry and determines the victim’s branch out-
come (i.e., the secret) by timing the probe or monitoring
specific performance counters like the number of branch
mispredictions.

BranchScope is an example of a speculative fetch attack since the
leakage occurs at the processor frontend through secret dependent
predictions made by the PHT. While many systems are still vulner-
able to BranchScope, the original attack is limited since it needs
to control the OS to extract secret keys with more than one bit by
interrupting the victim gadget at each secret dependent branch ex-
ecution. In addition, BranchScope requires that the attacker primes
and uses simple 1-level predictors of the PHT to have a successful
and high-resolution attack. However, in this work, we show that
state-of-the-art branch predictors can remember decision

patterns of conditional branches with high accuracy, which
enables an unprivileged attacker to reconstruct the secret data with
a high resolution without interrupting the victim execution.

3 CONJURING ATTACK

We present Conjuring, a new variant of speculative fetch attacks
that, unlike previous work [11], allows an unprivileged attacker to
successfully launch an attack, without requiring the OS to precisely
control the victim execution and without requiring the attacker to
prime the branch predictor. We exploit the fact that state-of-the-art
branch predictors can remember branch patterns and therefore can
leak the confidential information that has already been learned.
Our attack performs only two steps without interfering with the
victim’s execution:
Step 1 Training the PHT with the secret (victim). The victim

runs normally and trains the PHT with its secret informa-
tion and branch decisions;

Step 2 Measuring the execution time of the attack gadget

(attacker). After victim execution, the attacker needs to (a)
create a PHT collision with the victim branch [5, 19] and
(b) take a guess about the secret. The attacker evaluates
the correctness of the guess to extract the secret.

Figure 2 shows an example of victim and attack gadgets, along
with a timeline of the events during the second step of the attack.

B1: if (secret == 1)
A();

else B();

Victim gadget
B2: if (guess == 1)

f();
else g();

Attack gadgetB1 and B2 have 
PHT collisions

B2 predicted 
as Not-Taken

B2 correct 
prediction

Non-speculative 
execution of f()

I-Cache miss 
for f()

Speculative 
fetch of f()

B1 trained Not-taken

B1 trained Taken

Attack gadget timing (Speculative execution disabled)

B2 predicted 
as Taken

B2
misprediction

I-Cache miss 
for g()

Speculative 
fetch of g()

ROB 
squash

Non-speculative fetch 
and execution of f()

I-Cache miss 
for f()

secret == 1 
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secret == 0 
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(Correct guess)

(Incorrect guess)

Figure 2: Events and timing of correct prediction (correct

guess) and misprediction (incorrect guess) in Conjuring

attack. We assume that before executing the attack gadget

all instructions and data of the attacker are flushed from

the caches. Note that, Not-Taken means executing the fall-

through path (A() and f() in this example).
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Perfect Prediction (secret) TAGE-SC-L-64KB
TournamentBP MultiperspectivePerceptron64KB

Taken
Not-Taken

Taken
Not-Taken
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Figure 3: Investigation of different branch predictors in gem5

and their prediction for RSA private key after 1,000 rounds

of decryption. The results show that TAGE-SC-L-64KB re-

members the entire key. Note, that a Taken decision means

that the secret bit is 0 based on the RSA code in Listing 1. The

secret is (1011001011110111111)2.

If the attacker guesses correctly, the instructions are fetched from
the correct path and are not squashed later. However, in case of an
incorrect guess, the incorrectly fetched instructions are squashed
and the processor starts fetching and executing instructions from
the correct path (speculative execution is disabled in Figure 2). As
shown in the figure, the attacker can evaluate the correctness of
the guess by measuring the execution time of the attack gadget.

This attack exploits the victim itself to prime and train the PHT
state with the secret. Our investigations using gem5 simulation [2]
with different branch predictors (Figure 3) show that TAGE-SC-L-
64KB [6] is able to learn all 19 bits of the private exponent in a
Montgomery Ladder RSA [18] (Listing 1) after 1,000 rounds of de-
cryption. Older branch predictors fail to remember all the bits. For
example, MultiperspectivePerceptron64KB [16, 17] provides incor-
rect predictions for 4 of the secret bits. Furthermore, Table 1 shows
the accuracy of branch predictors in extracting recommended RSA
key sizes [33] after 10,000 rounds of training. Prior work demon-
strates that only recovering 60% of the private RSA key is sufficient
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Table 1: Percentage of full RSA key recovery with different

key sizes in different branch predictors.

RSA Key Size
Key Recovery Percentage

Multiperspective- TournamentBP TAGE-SC-L-64KBPerceptron64KB

512 50.39% 89.26% 74.61%
768 45.57% 86.20% 69.27%
1024 52.25% 83.20% 63.77%
1536 51.89% 79.95% 61.59%
2048 49.37% 75.24% 59.33%

for full key recovery by exploiting redundancies in the storage of
RSA public keys [12, 15]. The results show that TournamentBP and
TAGE-SC-L-64KB already show an acceptable accuracy for full key
recovery. Deploying increasingly better branch predictors make
speculative fetch attacks even more serious than was previously
realized. In Section 4, we demonstrate the feasibility of our attack
on real existing CPUs.

3.1 Threat Model

The attack assumptions are: (1) the leaking channel (e.g., the PHT)
must be shared between the attacker and the victim. This means
that the attacker and the victim run on the same physical core, (2)
the attacker can trigger or is able to watch for and validate the
victim code execution. (3) Our attack works for different privilege
levels, including an unprivileged attacker.

3.2 Attack Surface

Any program with confidential control flow is vulnerable to specu-
lative fetch attacks. Many existing cryptographic implementations
have secret dependent branches, like the RSA modular exponentia-
tion in LibreSSL v3.3.6 [30]1 and MbedTLS v3.5.0 [24]. Moreover,
many real-world applications have branches that can leak confiden-
tial information (e.g., users’ Bluetooth connections [3] and battery
properties [1] in the Linux kernel).

4 PROOF-OF-CONCEPT ATTACKS

To demonstrate the feasibility of the attack on real existing CPUs,
we run our Proof-of-Concept (PoC) attack on three different CPUs:
(1) Intel, (2) AMD, and (3) Apple. In our PoC, shown in Listing 2, we
use the same function as the victim gadget and the attack gadget
(see func()). This choice ensures a perfect PHT branch collision.
Prior work have demonstrated different techniques to create PHT
collisions [5, 8, 19, 40]. In main function, we assume the secret is
1 and train the PHT with this secret by running the victim 1,000
times. Afterwards, we call the same gadget with our guess for the
secret. We try 0 and 1 as our guesses multiple times to test if we
can observe timing differences between correct guesses (i.e., GUESS
defined as 1) and incorrect guesses (i.e., GUESS defined as 0).

Experimental Setup. Table 2 shows the system configurations
that we used for our PoC attack. For the Intel and AMD CPUs, we
use the native _rdtsc() function as current_cycle_count() in
Listing 2. However, Apple CPUs do not have such a native function
1We have tested and reported this attack surface to Apple as part of our disclosure
(the default OpenSSL library installed on macOS Ventura 13.0).

1 #define GUESS 1
2
3 void func(int input){
4 if (input){
5 asm volatile(
6 ".rept 10000"
7 "nop\n"
8 ".endr"
9 );
10 }
11 else{
12 asm volatile(
13 ".rept 10000"
14 "nop\n"
15 ".endr"
16 );
17 }
18 }
19
20 void main() {
21 for(int i = 0; i < 1000; i++)
22 func(1); //victim call (input is the secret, i.e., 1)
23 int cycles = current_cycle_count();
24 func(GUESS); // attacker call (input is the guess;
25 // different guesses in differet trials)
26 printf("%d\n", current_cycle_count()-cycles);
27 }

Listing 2: Conjuring Proof-of-Concept.

and we implemented current_cycle_count() by incrementing a
shared variable with the OSAtomicIncrement64() function from
the libkern/OSAtomic.h. The attacker starts a second pthread
that loops and continuously increments this shared variable. The
main thread can estimate the passage of time by reading the value
from the shared variable.

Figure 4 shows the results for different CPUs. We illustrate the
execution time of the attack gadget for 20 trials for both cases that
the attacker has a correct guess (correct prediction from the PHT)
and incorrect guess (branch misprediction). For the Intel CPU (see
Figure 4(a)), the execution time of the attack gadget, in the case
of an incorrect guess is on average 2.29× longer compared to the
execution time when the attacker has a correct guess. In addition,
we observe that the timing difference between an incorrect guess
and a correct guess is at least 1657 cycles (denoted as MISPRED_-
THREAHOLD) in 20 trials of the attack.

Figure 4(b) shows the execution time of the attack gadget for 20
trials for the AMD CPU. This figure indicates system noise for the
first and the seventh trials which are potentially a result of ICache
misses of the instructions. Figure 4(c) shows a zoomed-in version of
results in order to precisely observe the timing difference of correct
prediction vs. branch misprediction. As seen in Figure 4(c), the
execution of the attack gadget has more fluctuations in case of the
misprediction which can be a result of ROB squashes and fetching
new instructions for each trial. We observe that the minimum exe-
cution time of mispredictions is always higher than the execution
of the correct predictions. We show the MISPRED_THREAHOLD in
Figure 4(c) which is 24 cycles. On average, the execution time of
incorrect guesses is 1.18× longer compared to when the attacker
has a correct guess.

Figure 4(d) shows the attack trials for the Apple CPU. Similar to
the AMD CPU, we observe system noise in three trials. To better
observe the timing differences, Figure 4(e) illustrates a zoomed-in
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Table 2: Experimental setup for Conjuring PoC attack on three different CPUs.

Intel AMD Apple

Model Name Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz AMD EPYC 7532 32-Core Processor MacBook Pro (Apple M1 Pro chip)
CPU Cores 4 32 10 (8 performance and 2 efficiency)
CPU MHz 849.410 1499.479 2064 - 3220
Cache Size 8192KB 512KB L1: 128KB (perf.) 64KB (eff.), L2: 4MB
Operating System Ubuntu 18.04 Ubuntu 20.04 macOS Ventura 13.0
Compiler gcc (Ubuntu 7.5.0-3ubuntu1 18.04) 7.5.0, -O0 GCC 9.4.0, -O0 Apple clang version 14.0.0, -O0
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Figure 4: PoC attacks results: (a) Intel CPU that the MISPRED_THREADHOLD is 1657 cycles; (b,c) AMDCPUwhich (c) is the zoomed-in

version of (b). MISPRED_THREADHOLD is 24 cycles for AMD; (d,e) Apple CPU which (e) is the zoomed-in version of (d). MISPRED_-
THREADHOLD is 23 cycles for Apple.

Table 3: Summary of Conjuring PoC attacks. Average ratio

indicates the significance of average latency for incorrect

guesses compared to correct guesses.

CPU
Average Timing for
Correct Incorrect Average Min. Difference
Guess Guess Ratio (MISPRED_THREADHOLD)

Intel 2726.65 6233.10 2.29× 1657
AMD 2101.20 2478.00 1.18× 24
Apple 185.45 823.95 4.44× 23

version of the results. The results confirm that incorrect guesses
always experience higher latency with more fluctuations (as a result
of squashing misspeculated instructions and fetching instruction
from the correct path). The MISPRED_THREAHOLD is 23 cycles for
the Apple CPU and incorrect guesses show 4.44× higher latency
on average compared to correct guesses.

Table 3 shows a summary of the PoC attacks and their statistics.
Our results demonstrate that Intel significantly shows higher vis-
ibility for the Conjuring attack. This can be attributed to more
complicated frontends and different paths for instruction delivery
in Intel x86 CPUs, demonstrated in prior works [7, 9, 44].

5 MITIGATING SPECULATIVE FETCH

ATTACKS

In this section, we investigate existing mitigations for Conjuring
and propose a new comprehensive and efficient defense for future

CPUs. Our mitigation uses taint tracking to mark secret dependent
control flow instructions (i.e., vulnerable to Conjuring leakage and
speculative fetch attacks) and inform the CPU to avoid speculative
operations at the frontend to prevent unintended encoding of the
secrets in frontend structures.

Data-oblivious programming. Comprehensive software-only
defenses adopt strict policies like data-oblivious programming [23,
25, 29, 32] (e.g., removing secret dependent branches). Adapting to
such guidelines is challenging for real-world and control flow inten-
sive programs. Even many cryptographic modules still use secret
dependent branches (see the examples in Section 3.2) because of (1)
the engineering efforts to port the legacy codes to data-oblivious
principles and (2) significant performance overheads [41]. Instead,
these applications secure non-speculative leaks of the programwith
lightweight spot defenses based on the adversaries’ capabilities2;
however, they are still vulnerable to Conjuring.

While some crypto libraries provide data-oblivious (also known
as constant-time) implementations of the algorithms, the unsafe
gadgets still exist in the libraries and it is the users’ responsibil-
ity to choose safe implementations. For example, Listing 3 shows
the usage of modular exponentiation for RSA decryption in Li-
breSSL v3.3.6 [30]. In line 3, the user needs to specify to enable
the constant-time implementation, otherwise the default imple-
mentation is vulnerable to Conjuring. In addition, existence of
unsafe attack surfaces brings many opportunities for attackers to

2For example, a minor compiler update mitigates the fetch width misalignments
exploited by Frontal attacks [28].
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1 BIGNUM *d = BN_new();
2 BN_hex2bn(&d, "0x5db...a10");//private exponent
3 BN_set_flags(d, BN_FLG_CONSTTIME);//for constant-time decryption
4 BN_mod_exp_mont(decrypted_message,encrypted_message,
5 d,n,ctx,mont_ctx);

Listing 3: Usage of RSA modular exponentiation in LibreSSL

v3.3.6 [30].

exploit, especially with emerging tools using Large Language Mod-
els (LLMs) to assist programming. For example, Schuster et al. [31]
demonstrate poisoning attacks to force code-autocompletion fea-
tures of IDEs to suggest unsafe flags and versions of crypto modules.

Secure branch prediction designs. A line of research aims
to design secure Branch Prediction Units (BPUs) to prevent the
attacks originating from branch prediction (e.g., some variants of
Spectre [20] and speculative fetch attacks [11]). These defenses
implement flushing [10, 22, 34], partitioning [35, 40], randomiz-
ing [13, 21, 43, 45], or a combination of these techniques [46]. Most
of these implementations incur high performance and area over-
heads and offer limited protection. Moreover, they share two main
limitations: (1) they fully trust the OS to apply appropriate mitiga-
tions at context switches; i.e., not covering malicious OS (like Intel
SGX), and hyperthreading in most cases. (2) These defenses secure
specific structures in the BPU since their goal is to prevent a known
set of attacks. However, speculative fetch attacks, including Conjur-
ing, can potentially exploit any structure in the frontend contain-
ing branch prediction information. For example, BunnyHop [44]
demonstrates that the instruction prefetcher in Intel processors
preserve branch prediction information. Securing all individual
components in processors’ frontend that store branch prediction in-
formation, explicitly or implicitly, seems challenging with unknown
efficiency impacts, given that many processors have complicated
frontends with undisclosed structures and behaviors [7, 9].

5.1 Mitigating Conjuring in Future CPUs

As we explained earlier in this section, it is unlikely to migrate all
crypto implementations to efficient data-oblivious implementations
in near future and completely remove all unsafe attack surfaces.
To efficiently and comprehensively block speculative fetch attacks
through all potential leaking channels in the frontend and cover
strong adversaries (including malicious OSes), we propose a selec-
tive fetch restriction strategy, called as selFetch-Restriction, based
on taint tracking. State-of-the-art taint tracking tools can detect
all instructions of crypto modules that are tainted by sensitive in-
formation (i.e., secrets). Hence, a hardware/software co-operative
solution can mark the tainted (secret dependent) control flow in-
structions and inform the hardware about the sensitivity of the
instructions. In case of fetching a tainted control flow instruction,
the hardware will restrict accessing frontend structures (like BPU
and prefetchers) and waits until the control flow condition is re-
solved before redirecting the fetch. Since frontend stalls only occur
for secret dependent branches in a fine-grained way, performance
overheads are minimal.

Experimental Results. Figure 5 shows normalized execution
time of three designs: (2) Insecure Baseline which is the baseline
OoO processor with no protection, (2) selFetch-Restriction which is
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Figure 5: Execution of selFetch-Restriction and Secure Baseline
mitigation strategies normalized to Insecure Baseline. The
x-axis shows the number of tainted (i.e., secret dependent)

and total branches for each application (tainted/total).

our proposed mitigation, and (3) a Secure Baseline that completely
disables the BPU to comprehensively block speculative fetch attacks
(the same protection scope as selFetch-Restriction). We evaluate a
set of realistic crypto modules and standard microbenchmarks for
constant-time enforcements [4, 23, 29, 38]. We integrate a taint
tracking mechanism into the LLVM compiler to mark secret depen-
dent branches [4]. Note, that we only consider the applications with
tainted branches, and each application in Figure 5 is denoted with
the number of tainted branches and total branches (tainted/total).
In addition, we implement selFetch-Restriction mechanism in the
gem5 simulator [2] with a Golden-Cove like microarchitecture con-
figuration [27] (e.g., ROB size of 512 entries) with TAGE-SC-L-64KB
branch predictor.

The results in Figure 5 show almost zero performance overhead
for selFetch-Restriction (0.03% overhead over the Insecure Baseline).
However, the Secure Baseline incurs significant overhead of 80.98%
which can go up to 2.97× compared to the Insecure Baseline.

6 RELATEDWORK

Speculative attacks on the frontend. As we discussed in Sec-
tion 2, BranchScope [11] is a prior example of speculative fetch
attacks. The main difference of Conjuring and BranchScope is that
Conjuring does not require (1) priming the PHT prior victim exe-
cution and it uses the victim itself to train and encode the secrets,
and (2) it does not require OS control privileges to interfere with
the victim execution, which enables a realistic and practical attack.

Phantom [37] is another attack that exploits the branch mispre-
dictions detected at the decode stage. This attack shows that Intel
and AMD CPUs can resteer the fetch direction at the frontend and
decode stage, earlier than classic Spectre attacks [20] that exploit
the backend resteers. However, unlike Conjuring, Phantom at-
tacks still need to execute memory loads in some of their exploits
and also targets the same attack surface of Spectre attacks. More-
over, Phantom relies on another channel, like Flush+Reload [39]
via caches, to transmit secrets. However, in Conjuring attack, the
frontend itself serves as a transmission channel.

In addition, some attacks use the PHT as a transmission channel
like BranchSpectre [8]. BranchSpectre targets Spectre gadgets and
primitives to leak arbitrary data, and moreover, it requires a nested
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branch inside mispredicted branch in order to encode the data
inside the PHT. In other words, BranchSpectre still exploits the
backend speculations, similar to Spectre, and only uses the PHT as
a transmission channel. Weisse et al. [36] launch the same attack
while using the BTB as a transmission channel. All these attacks will
be blocked with mitigations for speculative execution attacks [14,
26, 36, 42]. However, Conjuring and speculative fetch attacks are
still effective even if Spectre defenses are deployed.

Non-speculative attacks on the frontend. The Branch Shad-
owing attack [22] uses the BTB to leak the target address of a secret
dependent branch. Frontal Attacks [28] exploit different fetch width
alignments of secret dependent branches to distinguish the secrets.
Frontend vulnerabilities revealed by Leaky Frontends [9] also ex-
ploit the fact the instructions take different paths in the frontend
and exploit this difference for side channel and covert channel at-
tacks. All these frontend based attacks use the frontend structures
as a channel to leak information, however, they do not exploit spec-
ulative operations in the frontend, and unlike Conjuring, rely on
the sequential (i.e., non-speculative) leaks of the programs.

7 CONCLUSION

In this work, we propose Conjuring as a new variant of specu-
lative fetch attacks; Conjuring can realistically leak control flow
information of the victim without requiring OS control privileges
and priming the PHT. Conjuring leverages the victim itself to
train the PHT and encode its sensitive control flow decisions. Later,
we exploit the frontend misspeculations to distinguish correct and
incorrect guesses and successfully extract the victim’s control flow.
We demonstrate that better branch predictors are more vulnerable
to Conjuring since they are capable of remembering longer histo-
ries of branch decisions. We show that existing branch predictors
can remember an acceptable percentage of real-world RSA private
keys, leading to full key extraction. In addition, we demonstrate
the feasibility of Conjuring on three different real CPUs: Intel,
AMD, and Apple. Finally, we propose an efficient defense to block
the Conjuring leaks for the vulnerable attack surfaces.
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