
Levioso: Efficient Compiler-Informed Secure Speculation
Ali Hajiabadi

1
Archit Agarwal

2
Andreas Diavastos

1
Trevor E. Carlson

1

1
National University of Singapore

2
University of California, San Diego

ABSTRACT

Spectre-type attacks have exposed a major class of vulnerabilities

arising from speculative execution of instructions, the main perfor-

mance enabler of modern CPUs. These attacks speculatively leak

secrets that have been either speculatively loaded (seen in sand-

boxed programs) or non-speculatively loaded (seen in constant-time

programs). Various hardware-only defenses have been proposed to

mitigate both speculative and non-speculative secrets via all poten-

tial transmission channels. However, limited program knowledge is

exposed to the hardware and these solutions conservatively restrict

the execution of all instructions that can potentially leak.

In this work, we show that not all instructions depend on older

unresolved branches and they can safely execute without leaking

speculative information. We present Levioso, a novel hardware/-

software co-design, that provides comprehensive secure speculation

guarantees while reducing performance overhead compared to ex-

isting defenses. Levioso informs the hardware about true branch

dependencies and applies restrictions only when necessary. Our

evaluations demonstrate that Levioso is able to significantly reduce

the performance overhead compared to two prior defenses from

51% and 43% to just 23%.

1 INTRODUCTION

Speculative execution attacks, like Spectre [18], are a major concern

in modern processor designs as they exploit the main enabler of

their performance, speculative execution [26]. These attacks trick the
processor into transiently executing unintended paths of the pro-

gram and force the victim to access sensitive information and leak

it into a microarchitectural covert channel (e.g., data caches [37]).
To mitigate speculative execution attacks, comprehensive solutions

aim to prevent transmitting secret information through all potential

channels by restricting the execution of speculative instructions

(i.e., channel-agnostic mitigations). For example, STT [39] deploys

a dynamic taint tracking technique to restrict the execution of

instructions that are tainted by speculative loads. Following solu-

tions [8, 24, 33] use the same insight, and propose hardware-only

mechanisms to detect and restrict the execution of unsafe instruc-

tions. These solutions provide secure speculation for sandboxed pro-

grams that guarantee their memory accesses are within authorized

address ranges during the correct execution. However, they fail to

provide secure speculation for the secret data that has already been

loaded into a register non-speculatively (as seen in constant-time
and cryptographic programs). To protect non-speculative secrets,

speculative execution of all instructions, potentially tainted by se-

cret values, must be restricted. Current solutions for constant-time

programs either manually specify secret regions of memory and

track the taints in the hardware [10, 12, 33] or assume all memory

regions are secret and declassify them only if they leak during

non-speculative execution as well [8].

Unfortunately, many of these solutions tend to significantly re-

duce benefits of speculative execution, as they follow a conservative

Inst1
Inst2
Inst3
Inst4
Inst5

x = 1, y = 1
if (condition)

x <- x + 1 //branch-dependent (control)
leak(x) //branch-dependent (data)
leak(y) //branch-independent

Figure 1: Motivating example with branch dependencies.

approach of restricting the execution for majority of instructions

after an unresolved branch. However, our studies show that many

of the restrictions introduced by these mitigations are unneces-

sary because not all instructions after a conditional branch are

truly dependent on the branch outcome. We show a motivating

example in Figure 1. In this example, Inst4 leaks different values,
either 1 or 2, depending on the branch outcome (i.e., it is data de-
pendent on branch Inst2). However, Inst5 leaks the same value

independently from the path executed after the branch (it always

leaks value 1). Hardware-only defenses do not have sufficient in-

formation about all possible control flow paths and true branch

dependencies of the program, as the processor only views a small

window of instructions at any given moment. Hence, they tend to

conservatively restrict most instructions. Our key insight is that

a hardware/software co-design can provide a more efficient solution,
where the compiler informs the hardware about true branch depen-

dencies and the hardware allows the execution of instructions once

these dependencies are resolved.

In this work, we propose Levioso that provides comprehensive

security and high performance via hardware/software co-design.

To accomplish this, we use a static compiler pass to detect and

communicate true branch dependencies to the hardware. Our hard-

ware uses this information to apply restrictions only if necessary,

mitigating speculative execution attacks. Levioso provides secure

speculation for both sandboxing and constant-time policies.

The main contributions of this work are as follows:

• A novel hardware/software co-design that enables comprehen-

sive defense for Spectre-type attacks (both speculative and

non-speculative secrets) with no programmer effort
1
;

• Significantly reducing performance overhead compared to prior

defenses (reducing 51% and 43% overhead of Dolma [24] and

STT [39] to just 23%), with negligible power and area overheads.

2 BACKGROUND

2.1 Speculative Execution Attacks

Speculative execution attacks aim to bypass array bounds checks

of sandboxes or speculatively transmit the secret data of constant-

time programs (see code snippets in Figure 2 as examples). In these

attacks, the attacker (1) trains the branch predictor to mispredict

victim branches (lines 5 and 11 in Figure 2), and (2) speculatively

transmit the secret to a primed channel (lines 7 and 13). Note, that

1
Our LLVM compiler is open-sourced at https://github.com/Compiler-Dependency-

Analysis/llvm-levioso.

1

https://github.com/Compiler-Dependency-Analysis/llvm-levioso
https://github.com/Compiler-Dependency-Analysis/llvm-levioso

DAC’24, June 2024, San Francisco, CA, USA Ali Hajiabadi, Archit Agarwal, Andreas Diavastos, and Trevor E. Carlson

1
2
3
4

void leak(x){
index <- x * 64
temp <- load channel[index]

}

(b) Sandboxed program (speculative secret)(a) Leaking/declassifying x (c) Constant-time program (non-speculative secret)
independent

data dependent
control dependent

10
11
12
13
14

//non-spec. secrets: state1, state2
for (i = 0; i < num_rounds; i++)
state1 <- decrypt_ct(state1, key[i])

leak(state1) //unsafe transmit
leak(state2) //safe transmitindependent

control dependent

5
6
7
8
9

if (idx < sizeA){
x <- load A[idx] //spec. secret
leak(x) //unsafe transmit

}
leak(y) //safe transmit

Figure 2: (a) leak(x) declassifies and leaks value x by transmitting to a channel. (b) and (c) are motivating examples of sandboxed

and constant-time programs indicating the instructions that require restriction (i.e., control/data dependent) and the instructions
that are independent and do not require restriction.

the secret is also loaded speculatively a sandboxed program (line 6).

The processor then detects the branch misprediction, rolls back the

misspeculated state, and resumes the execution from the correct

path. However, the transmitted secret leaves persistent changes

that the attacker can use to extract the secret. Spectre-v1 [18] was

the first attack exploiting this vulnerability, with several follow-up

variants [3, 6, 7, 15, 25, 34].

2.2 Existing Defenses

Many initial defenses [5, 17, 27, 28, 31, 32, 36] focused on pro-

tecting specific channels, such as caches [18, 19]. However, new

Spectre variants have demonstrated that other components in the

core can act as a channel as well, such as the Branch Target Buffer

(BTB) [35]. As an attempt to build more comprehensive counter-

measures, recent works have focused on mitigating the attack at

the source [10, 24, 33, 35, 38, 39], by completely restricting specula-

tive execution of instructions that can potentially reveal sensitive

information. The focus of these works is to block leaks through all

potential channels (i.e., channel-agnostic protection). However, they
incur high performance overheads by restricting many instructions

even if they are safe and do not leak any speculative data.

3 MOTIVATION: HW/SW CO-DESIGN

A comprehensive and efficient defense for speculative execution

attacks restricts execution only for the instructions that can poten-

tially leak misspeculated information and avoids restrictions for

the instructions that are guaranteed to be safe and commit.

▶ Motivating Example 1: sandboxed programs. Figure 2b

shows a sandboxed memory access that can potentially leak con-

fidential values in case of branch misprediction (i.e., idx ≥ sizeA).

However, value y leaks during the correct execution of the pro-

gram (i.e., non-speculative leak, line 9). The desired defense would

only restrict the execution for control dependent instructions (high-

lighted as control dependent) and prevent unnecessary restrictions

for independent instructions (highlighted as independent).
▶Motivating Example 2: constant-time programs. Figure 2c

shows a legal constant-time implementation of data decryption.

Once all rounds of decryption are completed, state1 contains the

plaintext and is declassified (line 13); in other words, it is allowed

to leak state1. However, in case of a branch misprediction for

the loop branch (line 11), state1 leaks before the decryption is

completed and is legally declassified. A comprehensive solution

to block such leaks will need to restrict the execution for control

dependent instructions (line 12) alongside the instructions that

their input data is dependent on the control dependent instructions

(highlighted as data dependent, line 13). On the other hand, state2
is declassified during non-speculative execution (line 14) and leaks

the same state independently of the branch outcome. Hence, state2
can leak even if the loop branch (line 11) is unresolved.

▶ Design Choice: We deploy a hardware/software co-design

to inform the hardware about guaranteed-to-be-safe speculation.

We start with a secure baseline (i.e., restricting execution for all

speculative instructions) and lift restrictions only if the static com-

piler analysis guarantees that the execution is safe. This approach

provides comprehensive security while improving performance.

4 THREAT MODEL

We cover all Spectre-type attacks exploiting known sources of

speculation (e.g., branch predictions and memory dependence spec-

ulation) [3, 6, 15, 18, 25, 34]. The attacker can use any channel to

misspeculatively transmit data. We cover attacks targeting both

speculative secrets (referred to as sandboxing throughout the paper)

and non-speculative secrets (referred to as constant-time programs).

Out of Scope.We do not consider Meltdown-type attacks (ex-

ploiting the delays arising from CPU exceptions and faults, e.g.,

[23], including MDS attacks). New processors are already resis-

tant to them [11]. In addition, attacks exploiting leaks during non-

speculative execution are out of scope of this work.

5 LEVIOSO DESIGN

Levioso design deploys a hardware/software co-design solution

that efficiently applies minimal restrictions to guarantee strong pro-

tections. It provides a compiler and interface (Section 5.1) that com-

municates true branch dependencies. Hardware uses this informa-

tion to apply proper restrictions (Section 5.2). Figure 3a shows the

Levioso design, highlighting the modifications over existing pro-

cessor designs and compilers. Levioso has always-on security, even

for legacy binaries not compiled by our compiler. But, if needed,

Levioso protections can be disabled by simply instrumenting the

binary and manipulating the restriction bits through Levioso inter-

face. We built and verified the end-to-end and automated design of

Levioso using the LLVM compiler [20] and gem5 simulation [4].

5.1 Levioso Compiler and Interface

Current hardware designs cannot reason about true branch depen-

dencies, as they do not have information about the entire program

and its control flow [13]. However, static compiler analysis shows

that not all instructions are truly dependent on the branch outcome.

Algorithm 1 shows how we detect all the dependent instructions of

a conditional branch using the control flow graph (CFG) and data

flow graph (DFG).

First, we detect control dependent instructions by visiting all the

instructions between the branch and its reconvergence point (i.e.,
2

Levioso: Efficient Compiler-Informed Secure Speculation DAC’24, June 2024, San Francisco, CA, USA

Levioso Interface

Branch Dependencies (9 bits)
Fetch Unit

Instruction
Cache

Branch
Pred. Unit

Decode
Rename

Register File

Instruction Queue

Load/Store Queue

Reorder Buffer

Execution
Unit

Commit

Writeback

Levioso Microarchitecture

UBT

Compiler Static
Dependency Analysis

BD Informed
(1 bit)

BranchID
(4 bits)

Dependent
BranchID (4 bits)

BranchID Seq. Num

1001 2501986

… …

Unresolved Branches Table (UBT)

Entry
Branch Dependency Restrictions

Dependent Branch
<BranchID, Seq. Num> Restricted

… … …

InstN <1001, 2501986> 1

Modified Reorder Buffer (ROB)

(a) Levioso End-to-End Design (b) New/Modified Hardware Structures

Levioso Compiler

New Modified

Figure 3: (a) Levioso design and (b) the structure of the modified ROB and the new UBT that stores unresolved branches

and maps the compiler-specified BranchID to the dynamic sequence number. Note, that the Branch Dependencies are set per

instruction through prefix bytes of x86 ISA (9 bits required for each instruction). The Load/Store Queue is hashed, similarly to

prior work [10, 24, 35, 39], we updated it to prevent speculative store-to-load forwarding attacks [15].

Algorithm 1: Branch Dependents Traversal

Input: Conditional Branch 𝐵𝑅,𝐶𝐹𝐺 , 𝐷𝐹𝐺

Output: Determining all the dependents of 𝐵𝑅 (𝐵𝑅.𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠)

1 𝑅𝑒𝑐𝑃𝑜𝑖𝑛𝑡 ← 𝐵𝑅.immediatePostDominator()

2 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑡𝑠 ← DFS(𝐶𝐹𝐺 , src: 𝐵𝑅, dest: 𝑅𝑒𝑐𝑃𝑜𝑖𝑛𝑡)

3 𝑑𝑎𝑡𝑎_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠 .clear()

4 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑠𝑡𝑠 .clear()

5 𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑠𝑒𝑡 ← 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠

6 while ¬𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑠𝑒𝑡 .empty() do
7 𝑖𝑛𝑠𝑡 ← 𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑠𝑒𝑡 .pop()

8 if 𝑖𝑛𝑠𝑡 ∉ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑠𝑡𝑠 then
9 foreach 𝑑𝑒𝑝 ∈ 𝑖𝑛𝑠𝑡 .direct_dependents do
10 𝑑𝑎𝑡𝑎_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠 .insert(𝑑𝑒𝑝)

11 𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑠𝑒𝑡 .push(𝑑𝑒𝑝)

12 end

13 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑠𝑡𝑠 .insert(𝑖𝑛𝑠𝑡)

14 end

15 end

16 𝐵𝑅.𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠 ← 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠 ∪ 𝑑𝑎𝑡𝑎_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠

the first point after the branch that control flow will reach regard-

less of the branch outcome) using depth-first traversal (line 2). The

reconvergence point of a branch is the immediate post-dominator of

the branch in CFG [9]. Next, we detect data dependent instructions.

We initialize the working_set with control dependent instructions

(line 5) and visit all the direct dependencies of the working_set
(line 9). Direct dependencies are determined through the compiler

def-use and alias analysis (i.e., analyzing whether two memory ob-

jects point to the same location). If two instructions have amay-alias

dependency we consider it as a dependency. Finally, we determine

the dependents of the input branch by the union of control_-
dependents and data_dependents (line 16). This compiler pass

statically considers all possible paths of the program between a

branch and its reconvergence point and considers all instructions

that their data can possibly change based on the branch outcome

in order to conservatively block all potential speculative data leaks.

Marking dependencies. First, we assign a static identifier to

each branch (see BranchID in Figure 3a). Second, we mark each

instruction with the BranchID of the most recent dependent branch

detected in the previous step (see Dependent BranchID in Fig-

ure 3)
2
. Note, that an instruction can depend on multiple branches

2
In the rare case of an instruction depending on multiple independent branches,

we either need to communicate multiple branches or conservatively assume that

the instruction depends on all prior unresolved branches (similar to state-of-the-art

hardware-only solutions [24]).

(e.g., in nested loops), however, we only mark the most inner branch

and leverage the chain of dependencies to correctly restrict execu-

tion for all dependent instructions (e.g., Inst depends on BR2, and
BR2 depends on BR1; Instwill not execute until BR2 is resolved, and
BR2 does not resolve until prior dependent branches are resolved,
i.e., BR1; see Section 5.2 for the details of our implementation).

We embed dependency information in the prefix bytes of the x86

ISA instructions. Other ISAs like RISC-V can define new instructions

to communicate the compiler information but with the cost of extra

instruction decoding. Our experiments show that 4 bits are enough

to represent the BranchID (see Section 7.2.2). In addition, we set the

BDInformed bit to 1 for the branches that our compiler is providing

dependency information. This bit is used to (1) support both legacy

binaries and (2) allow disabling protections if desired (we refer

to branches and instructions with BDInformed=1 as 𝐵𝐷𝑣𝑎𝑙𝑖𝑑 , and

𝐵𝐷𝑖𝑛𝑣𝑎𝑙𝑖𝑑 otherwise).

5.2 Levioso Microarchitecture

The requirements for Levioso’s microarchitecture are: (1) to collect

the compiler information communicated by the Levioso interface,

and (2) to prevent speculative execution of the instructions that

are dependent on at least one unresolved branch in the ROB. Note,

that we refer to branch BR as resolved only if it is guaranteed to

be on the correct path of the program; for unprotected processor

and hardware-only defenses, this means that all prior branches are

resolved, and in Levioso, it means that all prior branches that BR de-
pends on are resolved (i.e., it does not need to wait for independent
branches to resolve).

To correctly apply branch dependency restrictions, we introduce

a new hardware structure, called the Unresolved Branches Table

(UBT). The UBT stores all live unresolved branches (see Figure 3b).

The ROB is also modified to: (1) indicate if the execution of an

instruction is restricted due to branch dependency (Restricted
bit in Figure 3b) and (2) store the BranchID of the most recent

dependent branch (Dependent Branch in Figure 3b).

When a conditional branch is decoded it will enter the ROB and

update the UBT with its compiler-specified BranchID and unique

dynamic sequence number (dynamic identifier of instructions). In

case of a full UBT, we stall inserting new instructions to the ROB

(similar to ROB full event) until at least one of the branches in the

UBT resolves and is removed from the table (see Section 7.2.2 for

the impacts of UBT size). For every decoded instruction entering

3

DAC’24, June 2024, San Francisco, CA, USA Ali Hajiabadi, Archit Agarwal, Andreas Diavastos, and Trevor E. Carlson

the ROB, the processor checks if the instruction’s most recent de-

pendent branch exists in the UBT. In case of a hit in the UBT, the

instruction’s Restricted bit is set to 1 in the ROB and execution of

the instruction will be restricted. The ROB is also updated with the

BranchID and sequence number of the branch that the instruction

depends on. Note, that if an instruction is marked as 𝐵𝐷𝑖𝑛𝑣𝑎𝑙𝑖𝑑 (seen

in legacy binaries) then it will depend on the youngest branch in the

ROB and its execution is allowed only if the youngest branch and

its prior branches are resolved (similar to hardware-only solutions).

Finally, when a branch resolves and the correct path is determined,

the Restricted bit of all dependent instructions is set to 0 and they
can execute (i.e., they are guaranteed to be on the correct path).

For indirect jumps (e.g., calls), all instructions after the jump are

assumed to be dependent and they execute only if the jump resolves,

addressing Branch Target Injection (BTI) attacks, e.g., Spectre-v2. In
BTI attacks, indirect jumps are poisoned to execute attacker-chosen

targets, which makes it infeasible for static compiler analysis to

mark any instruction as independent. Hence, our approach for indi-

rect jumps is similar to hardware-only and other channel-agnostic

solutions like Dolma [24]. However, our hardware/software co-

design provides an extra level of flexibility to disable the restrictions

for indirect jumps in a fine-grained way if the system desires to

use other solutions of the CPU, like Intel eIBRS/AutoIBRS [16, 30],

while Levioso is still protecting other sources of speculation (e.g.,
conditional branches). This is possible through the use of binary

instrumentation; marking the jump as 𝐵𝐷𝑣𝑎𝑙𝑖𝑑 but not specifying

any dependent branches (i.e., no branch dependency).

In addition, prior works [24, 39] prevent all speculative fetch

redirects to mitigate channels relying on transient conditional ex-

ecution [34] or port contention in SMT processors [3]. However,

Levioso does not need to prevent redirects upon branches that

do not depend on any of the branches present in the UBT, i.e., un-

resolved branches. The reason is that the compiler information

guarantees that the branch direction does not depend on any ex-

isting transient data (i.e., the data that will be squashed), and as a

result, it does not reveal any information about transient data.

To prevent memory dependency misspeculation (e.g., speculative
store bypass [15]), we deploy a similar approach to prior work [8,

24, 35, 39] by always sending requests for loads even if they match

with an older, unresolved store (Load/Store Queue in Figure 3a).

5.3 Levioso Example

Figure 4 shows an example and a snapshot of the ROB where the

compiler information helps Levioso to avoid unnecessary restric-

tions posed by hardware-only defenses like Dolma [24]. There are

two branches BR10 and BR11. The condition of BR10 depends on

the value of Addr that misses in the cache; hence, facing a long la-

tency to resolve. Dolma restricts all the instructions after BR10 until
it resolves (i.e., Addr arrives from memory). However, Levioso’s

compiler information shows that only three instructions are truly

dependent and the rest are independent and can safely execute;

increasing instruction and memory level parallelism. The benefits

will be even more significant when the following branches resolve

faster than BR10 (e.g., the condition of branch BR11 depends on

the value of ValueX which hits in the cache) that allows for paral-

lelization of C[r4] and Addr memory requests. Our results show

Levioso Markings Micro-ops in ROB Levioso
Restrictions

Dolma
RestrictionsBDI BR DepBR

1 - 9 load r0 <- Addr //Miss no restriction no restriction
1 - 9 cmp r0, 10 no restriction no restriction
1 10 9 BR10: jg REC1 no restriction no restriction
1 - 10 load r1 <- A[r0] until BR10 resolves until BR10 resolves
1 - 10 load r2 <- B[r1] until BR10 resolves until BR10 resolves
1 - 10 REC1: add r3 <- r2 + 5 until BR10 resolves until BR10 resolves
1 - 9 xor r4 <- r4 ^ r4 no restriction until BR10 resolves
1 - 9 load r5 <- ValueX //Hit no restriction until BR10 resolves
1 - 9 cmp r5, 20 no restriction until BR10 resolves
1 11 9 BR11: jne REC2 no restriction until BR10 resolves
1 - 11 add r4 <- r4 + 1 until BR11 resolves until BR10 resolves
1 - 11 REC2: load r6 <- C[r4] //Miss until BR11 resolves until BR10 resolves

Long Latency RestrictionShort Latency RestrictionNo Restriction

Figure 4: Example of Levioso and Dolma. BDI : BDInformed,
BR: BranchID, DepBR: Dependent BranchID. Memory requests

for Addr and C[r4] are parallelized in Levioso while serial-

ized in Dolma. BR9 has already committed in this example.

that load stalls are the main reason of performance overhead which

Levioso improves over Dolma (see Figure 6).

6 SECURITY ANALYSIS

We define two policies; one for sandboxing and another for constant-
time, and analyze Levioso’s secure speculation w.r.t. each policy.

Definition 1 (Sandboxing policy). The sandboxing policy re-
quires the program to ensure that all memory accesses are within the
authorized address range.

To provide secure speculation for the sandboxing policy, hard-

ware must restrict the execution of branch control dependent in-

structions and their dependents. Levioso supports sandboxed pro-

grams by accurately detecting all control dependent instructions

through the compiler and communicating them with the hardware

for restriction. Since the static compiler analysis can accurately de-

tect the branch reconvergence point and all possible paths between

the branch and its reconvergence point, it eliminates the possibility

of potential errors [9].

Definition 2 (Constant-time policy). The constant-time policy
requires that all non-speculative observations of the program (e.g.,
program counter and memory addresses) are independent and not
affected by secret values.

To provide secure speculation for constant-time programs, hard-

ware must avoid speculative execution of the instructions that

leak the values that are loaded in all registers non-speculatively

(see Figure 2c as an example of non-speculative secrets). Levioso

provides secure speculation for the constant-time policy by conser-

vatively detecting all branch control dependent instructions and

their data dependent instructions. In other words, Levioso restricts

execution of all the instructions where their leaking values can be

different based on the branch outcomes. The performance benefits

of Levioso come from allowing execution of the instructions that

are guaranteed to be independent of the speculation sources and

speculative instructions. While our static compiler analysis might

over-approximate data dependencies (due to conservative static

alias analysis), it is sound by design and will not declassify any true

branch dependency.

4

Levioso: Efficient Compiler-Informed Secure Speculation DAC’24, June 2024, San Francisco, CA, USA

Table 1: System configuration for simulation.

L1d Cache 32KB, 8-way F/D/I/C width 8/8/8/8 RF (INT/FP) size 280/332

L1i Cache 32KB, 8-way LQ/SQ size 192/114 Branch Predictor TAGE-SC-L-64KB

L2 Cache 256KB, 8-way ROB size 512 Data Prefetcher Stride

L3 Cache 1MB, 16-way IQ size 97 UBT size 16

0

0.5

1

1.5

2

2.5

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

45
0.s

op
lex

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

48
3.x

ala
nc

bm
k

geo
meanN

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e Unprotected Baseline Levioso Dolma STT

Figure 5: Execution time of evaluated SPEC CPU2006 [14]

applications normalized to Unprotected Baseline.

7 EVALUATION

7.1 Experimental Setup

Simulation. We implemented Levioso in gem5 [4] and run simu-

lations in syscall emulation mode. We modify McPAT [22] version

1.3 for power analysis. Table 1 shows the gem5 configuration (a

Golden-Cove-like microarchitecture in Intel Alder Lake processors).

Compiler Implementation. We implemented our compiler

pass in LLVM 10.0 [20] to detect and mark branch dependencies.

Our pass is built at the machine level for the x86 architecture, but it

is not architecture-specific and can be ported to other architectures.

Benchmarks. We use a subset of C/C++ applications from

SPEC2006 [14] and the ELFie [29] methodology to generate rep-

resentative (SimPoint) executables with a region size of 1 billion

instructions.

7.2 Experimental Results

7.2.1 Performance of SPEC CPU2006. Figure 5 shows the perfor-
mance results for SPEC CPU2006 applications for four different

designs: (1) Unprotected Baseline, (2) Dolma [24], (3) STT [39]
3
,

and (4) Levioso. Dolma and STT show an average performance

overhead of 51% and 43% compared to the Unprotected Baseline, re-

spectively. Levioso’s performance overhead is just 23% on average.

This means that the Levioso methodology reduces the performance

loss by 2.22× over Dolma and 1.87× over STT designs on average.

In some cases STT shows better performance compared to Levioso

(e.g., 464.h264ref). The reason is that STT assumes that secret

transmissions only happen through loads and does not restrict the

execution of tainted stores, hence, restricting fewer instructions

compared to Levioso and Dolma in some cases. However, prior

work [24] demonstrates the vulnerability of STT against Spectre

attacks transmitting data via stores.

3
Dolma and STT implementations are adopted from [24] to support both sandboxing

and constant-time policies, as defined STT-Spectre (M+R) and Dolma-Default (M+R)

in [24]. Moreover, we disable the delay-on-miss optimization of Dolma as it is shown

to be vulnerable to speculative interference attacks [2].

0% 20% 40% 60% 80% 100% 120% 140% 160%

STT
Dolma

Levioso
Unprotected Baseline

Commit Cycles Breakdown (normalized to Unprotected Baseline)

LoadStall StoreStall SquashingBranchMispredict
SquashingMemoryViolation GeneralStall LoadOrder
StoreOrder ROBEmpty CommitSuccess

Figure 6: Commit cycle breakdown for different designs nor-

malized to total commit cycles of the Unprotected Baseline.

0%
25%
50%
75%
100%

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

45
0.s

op
lex

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

48
3.x

ala
nc

bm
k

geo
meanC

om
m

itt
ed

 In
st

ru
ct

io
ns

Br

ea
kd

ow
n

Relaxed RemainedRestricted NotRestricted

Figure 7: Committed instructions breakdown in Levioso

based on their restrictions: (1) Relaxed: restrictions relaxed

via compiler information, (2) RemainedRestricted: restric-

tions remain despite compiler information, (3) NotRestricted:

no restrictions. Note, that the instruction counts do not

equate to performance.

0%
10%
20%
30%
40%
50%
60%

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

43
3.m

ilc

44
4.n

am
d

45
0.s

op
lex

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

48
3.x

ala
nc

bm
k

geo
mean

E
xe

cu
tio

n
Ti

m
e

ov
er

U

nr
po

te
ct

ed
 B

as
el

in
e UBT=2 UBT=16 UBT=64 UBT unlimited

Figure 8: Execution time of Levioso over the Unprotected

Baseline with different UBT sizes.

Figure 6 depicts the commit cycles breakdown (i.e., the cycles
that at least one instruction is committed) of different designs (bars

are normalized to the total commit cycles of the Unprotected Base-

line). LoadStall is the main reason for blocking the head of the ROB

as a result of speculation restrictions; this occurs because restricting

execution of instructions will delay memory requests and lead to

more cycles waiting for data. Levioso is able to bring down the

81% and 77% of LoadStall in Dolma and STT to 63%, due to relax-

ing unnecessary restrictions informed by the compiler. Figure 7

shows the percentage of committed instructions in Levioso for

different applications that were initially restricted (dependent on

an unresolved branch) but Levioso was able to relax the restriction

later (when the true dependent branches resolved). Levioso relaxes

the restriction of 20% of committed instructions on average based

on the compiler information. Some applications benefit from the

compiler information significantly; 61% of the restricted instruc-

tions in 483.xalancbmk are relaxed and Levioso shows just an 18%

performance overhead, compared to 110% in Dolma and STT.

7.2.2 Impacts of UBT Size. Figure 8 shows the performance im-

pacts for different UBT sizes. The expectation is higher overhead

for smaller UBT sizes since it will block inserting instructions to the

ROB more frequently (like 429.mcf, and 450.soplex). However,

5

DAC’24, June 2024, San Francisco, CA, USA Ali Hajiabadi, Archit Agarwal, Andreas Diavastos, and Trevor E. Carlson

we observe that in some cases the Levioso overhead decreases

when using a smaller UBT (e.g., 458.sjeng). More in-depth inves-

tigation shows that limiting the number of unresolved branches

in some applications reduces the number of squashing cycles and

the number of dynamic instructions that the core decodes and

re-executes. For example, the number of squashing cycles due to

branch misprediction reduces by 1.9× for a UBT size of 2 compared

to a UBT size of 16 in 458.sjeng. A potential future work can de-

ploy a performance-aware and dynamic control of the speculation

level to limit the squashing cycles for problematic branches. To

have a balanced trade-off for the performance, power, and area, we

use a UBT size of 16 entries (as a direct-mapped memory). Levioso

consumes only 1.72% more power over the Unprotected Baseline

core with an area overhead of 1.42%.

8 RELATEDWORK

Channel-specific defenses. Early defenses for speculative execu-

tion attacks aimed to secure individual channels, like data caches

by either invisible speculation or undo-based speculation [5, 17, 31,

32, 36]. However, these strategies are shown to be ineffective [2, 21].

InvarSpec [40] is a performance optimization for invisible specula-

tion techniques using program analysis. In addition to inheriting

security flaws of the underlying defenses, InvarSpec introduces

new vulnerabilities [1].

Secure speculation for sandboxing. STT [39] restricts the

execution and NDA [35] prevents the propagation of data from spec-

ulative memory accesses (i.e., tainted). STT does not restrict the exe-

cution of tainted stores which has been shown to be vulnerable [24].

Following mitigations adopted same insights while improving the

performance [38]. Dolma [24] attempts to protect non-speculative

secrets, but its performance benefits come from allowing execution

for some speculative instructions (under certain conditions) that

can lead to exploits through resource contention [2].

Secure speculation for constant-time. Some works [10, 12,

33] adopt dynamic secrecy tracking by manually labeling the secret

regions of the memory; speculative execution of the instructions

tainted by secret data will be restricted. However, these defenses

cannot provide security for legacy software without labeling the se-

cret regions. SPT [8] is a hardware-only defense supporting secure

speculation for constant-time that assumes all memory regions are

secret and declassifies a region only if it leaks non-speculatively.

All these defenses implement taint tracking mechanisms in the

hardware and require extensive changes to track the taints in all

the components that can potentially process or store sensitive infor-

mation (e.g., all registers and L1 caches). However, Levioso exploits

compiler dependency information and only looks up a small table

(UBT) for restrictions.

9 CONCLUSION

We present Levioso, a hardware/software co-design to efficiently

and comprehensively protect against speculative execution attacks.

Levioso detects and marks true branch dependencies via static

compiler analysis and the hardware applies restrictions only when

necessary. Levioso significantly reduces the performance overhead

compared to prior defenses (with the same threat model) from 51%

and 43% to just 23%.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Arash Pashrashid, Shweta

Shinde, and Prateek Saxena for their valuable feedback.

REFERENCES

[1] Pavlos Aimoniotis, et al. 2021. It’s a Trap! - How speculation invariance can be abused with

forward speculative interference. arXiv:cs.CR/2109.10774

[2] Mohammad Behnia, et al. 2021. Speculative interference attacks: Breaking invisible speculation

schemes. In ASPLOS 2021.
[3] Atri Bhattacharyya, et al. 2019. SMoTherSpectre: Exploiting speculative execution through

port contention. In CCS 2019.
[4] Nathan Binkert, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture News

(2011).

[5] Thomas Bourgeat, et al. 2019. MI6: Secure enclaves in a speculative out-of-order processor. In

MICRO 2019.
[6] Guoxing Chen, et al. 2019. SgxPectre: Stealing Intel secrets from SGX enclaves via speculative

execution. In EuroS&P 2019.
[7] Yun Chen, et al. 2024. GadgetSpinner: A new transient execution primitive using the Loop

Stream Detector. In HPCA 2024.
[8] Rutvik Choudhary, et al. 2021. Speculative Privacy Tracking (SPT): Leaking information from

speculative execution without compromising privacy. In MICRO 2021.
[9] Ron Cytron, et al. 1989. An efficient method of computing static single assignment form. In

POPL 1998.
[10] Lesly-Ann Daniel, et al. 2023. ProSpeCT: Provably secure speculation for the constant-time

policy. In USENIX Security 2023.
[11] Deep Dive: CPUID enumeration and architectural MSRs 2023. https://www.intel.com/content/

www/us/en/developer/topic-technology/software-security-guidance/overview.html#MDS-

CPUID.

[12] Jacob Fustos, et al. 2019. SpectreGuard: An efficient data-centric defense mechanism against

spectre attacks. In DAC 2019.
[13] Ali Hajiabadi, et al. 2021. NOREBA: A compiler-informed non-speculative out-of-order commit

processor. In ASPLOS 2021.
[14] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer

Architecture News (2006).
[15] Jann Horn. 2018. Speculative execution, variant 4: Speculative store bypass.

[16] Intel, Indirect Branch Restricted Speculation 2018. https://www.intel.com/content/www/us/en/

developer/articles/technical/software-security-guidance/technical-documentation/indirect-

branch-restricted-speculation.html.

[17] Khaled N Khasawneh, et al. 2019. SafeSpec: Banishing the spectre of a meltdown with leakage-

free speculation. In DAC 2019.
[18] Paul Kocher, et al. 2019. Spectre Attacks: Exploiting speculative execution. In S&P 2019.
[19] Esmaeil Mohammadian Koruyeh, et al. 2018. Spectre Returns! Speculation Attacks using the

Return Stack Buffer. In USENIX WOOT 2018.
[20] Chris Lattner et al. 2004. LLVM: A compilation framework for lifelong program analysis &

transformation. In CGO 2004.
[21] Mengming Li, et al. 2022. unXpec: Breaking undo-based safe speculation. In HPCA 2022.
[22] Sheng Li, et al. 2013. The McPAT framework for multicore and manycore architectures:

Simultaneously modeling power, area, and timing. TACO (2013).

[23] Moritz Lipp, et al. 2018. Meltdown: Reading kernel memory from user space. In USENIX Security
2018.

[24] Kevin Loughlin, et al. 2021. Dolma: Securing speculation with the principle of transient

non-observability. In USENIX Security 2021.
[25] Giorgi Maisuradze et al. 2018. ret2spec: Speculative execution using return stack buffers. In

CCS 2018.
[26] Daniel S McFarlin, et al. 2013. Discerning the dominant out-of-order performance advantage:

Is it speculation or dynamism?. In ASPLOS 2013.
[27] Hamza Omar et al. 2020. IRONHIDE: A secure multicore that efficiently mitigates microarchi-

tecture state attacks for interactive applications. In HPCA 2020.
[28] Arash Pashrashid, et al. 2023. HidFix: Efficient mitigation of cache-based Spectre attacks

through hidden rollbacks. In ICCAD 2023.
[29] Harish Patil, et al. 2021. ELFies: Executable region checkpoints for performance analysis and

simulation. In CGO 2021.
[30] Kim Phillip. 2022. LKML: [PATCH 0/3] x86/speculation: Support Automatic IBRS. (2022).

[31] Gururaj Saileshwar et al. 2019. Cleanupspec: An "undo" approach to safe speculation. InMICRO
2019.

[32] Christos Sakalis, et al. 2019. Efficient invisible speculative execution through selective delay

and value prediction. In ISCA 2019.
[33] Michael Schwarz, et al. 2020. ConTExT: A generic approach for mitigating Spectre. In NDSS

2020.
[34] Michael Schwarz, et al. 2018. NetSpectre: Read arbitrary memory over network. CoRR

abs/1807.10535 (2018).

[35] Ofir Weisse, et al. 2019. NDA: Preventing speculative execution attacks at their source. In

MICRO 2019.
[36] Mengjia Yan, et al. 2018. Invisispec: Making speculative execution invisible in the cache

hierarchy. In MICRO 2018.
[37] Yuval Yarom et al. 2014. Flush+Reload: A high resolution, low noise, L3 cache Side-Channel

attack. In USENIX Security 2014.
[38] Jiyong Yu, et al. 2020. Speculative data-oblivious execution: Mobilizing safe prediction for safe

and efficient speculative execution. In ISCA 2020.
[39] Jiyong Yu, et al. 2019. Speculative Taint Tracking (STT): A comprehensive protection for

speculatively accessed data. In MICRO 2019.
[40] Zirui Neil Zhao, et al. 2020. Speculation invariance (InvarSpec): Faster safe execution through

program analysis. In MICRO 2020.

6

https://arxiv.org/abs/cs.CR/2109.10774
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html##MDS-CPUID
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html##MDS-CPUID
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html##MDS-CPUID
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html

	Abstract
	1 Introduction
	2 Background
	2.1 Speculative Execution Attacks
	2.2 Existing Defenses

	3 Motivation: HW/SW Co-design
	4 Threat Model
	5 Levioso Design
	5.1 Levioso Compiler and Interface
	5.2 Levioso Microarchitecture
	5.3 Levioso Example

	6 Security Analysis
	7 Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

